International Journal Of Mathematical Sciences And Engineering Applications

(IJMSEA)

International J. of Math. Sci. \& Engg. Appls. (IJMSEA) ISSN 0973-9424, Vol. 15 No. I (June, 2021), pp. 9-17

SEMIFULL LINE (BLOCK) SYMMETRIC n-SIGRAPHS

R. KEMPARAJU
Department of Mathematics, Government College for Women
Chintamani-563 125, India.

Abstract

An n-tuple $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is symmetric, if $a_{k}=a_{n-k+1}, 1 \leq k \leq n$. Let $H_{n}=$ $\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right): a_{k} \in\{+,-\}, a_{k}=a_{n-k+1}, 1 \leq k \leq n\right\}$ be the set of all symmetric n-tuples. A symmetric n-sigraph (symmetric n-marked graph) is an ordered pair $S_{n}=(G, \sigma)\left(S_{n}=(G, \mu)\right)$, where $G=(V, E)$ is a graph called the underlying graph of S_{n} and $\sigma: E \rightarrow H_{n}\left(\mu: V \rightarrow H_{n}\right)$ is a function. In this paper we introduced the new notions semifull symmetric n-sigraph and semifull line (block) symmetric n-sigraph of a symmetric n-sigraph and its properties are obtained. Also, we obtained the structural characterizations of these notions. Further, we presented some switching equivalent characterizations.

1. Introduction

Unless mentioned or defined otherwise, for all terminology and notion in graph theory the reader is refer to [1]. We consider only finite, simple graphs free from self-loops.

Key Words : Symmetric n-sigraphs, Symmetric n-marked graphs, Balance, Switching, Semifull symmetric n-sigraphs, Semifull line (block) symmetric n-sigraphs.
2020 AMS Subject Classification : 05C22
(c) http: //www.ascent-journals.com

Let $n \geq 1$ be an integer. An n-tuple $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is symmetric, if $a_{k}=a_{n-k+1}, 1 \leq$ $k \leq n$. Let $H_{n}=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right): a_{k} \in\{+,-\}, a_{k}=a_{n-k+1}, 1 \leq k \leq n\right\}$ be the set of all symmetric n-tuples. Note that H_{n} is a group under coordinate wise multiplication, and the order of H_{n} is 2^{m}, where $m=\left\lceil\frac{n}{2}\right\rceil$.
A symmetric n-sigraph (symmetric n-marked graph) is an ordered pair $S_{n}=(G, \sigma)$ ($S_{n}=(G, \mu)$), where $G=(V, E)$ is a graph called the underlying graph of S_{n} and $\sigma: E \rightarrow H_{n}\left(\mu: V \rightarrow H_{n}\right)$ is a function.
In this paper by an n-tuple/n-sigraph $/ n$-marked graph we always mean a symmetric n-tuple/symmetric n-sigraph/symmetric n-marked graph.
An n-tuple $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is the identity n-tuple, if $a_{k}=+$, for $1 \leq k \leq n$, otherwise it is a non-identity n-tuple. In an n-sigraph $S_{n}=(G, \sigma)$ an edge labelled with the identity n-tuple is called an identity edge, otherwise it is a non-identity edge.
Further, in an n-sigraph $S_{n}=(G, \sigma)$, for any $A \subseteq E(G)$ the n-tuple $\sigma(A)$ is the product of the n-tuples on the edges of A.
In [10], the authors defined two notions of balance in n-sigraph $S_{n}=(G, \sigma)$ as follows (See also R. Rangarajan and P.S.K.Reddy [6]
Definition: Let $S_{n}=(G, \sigma)$ be an n-sigraph. Then,
(i) S_{n} is identity balanced (or i-balanced), if product of n-tuples on each cycle of S_{n} is the identity n-tuple, and
(ii) S_{n} is balanced, if every cycle in S_{n} contains an even number of non-identity edges.

Note: An i-balanced n-sigraph need not be balanced and conversely.
The following characterization of i-balanced n-sigraphs is obtained in [10].
Theorem 1.1 (E. Sampathkumar et al. [10]) : An n-sigraph $S_{n}=(G, \sigma)$ is ibalanced if, and only if, it is possible to assign n-tuples to its vertices such that the n-tuple of each edge $u v$ is equal to the product of the n-tuples of u and v.
In [10], the authors also have defined switching and cycle isomorphism of an n-sigraph $S_{n}=(G, \sigma)$ as follows: (See also [5], [7-9], [12-22]).
Let $S_{n}=(G, \sigma)$ and $S_{n}^{\prime}=\left(G^{\prime}, \sigma^{\prime}\right)$, be two n-sigraphs. Then S_{n} and S_{n}^{\prime} are said to be isomorphic, if there exists an isomorphism $\phi: G \rightarrow G^{\prime}$ such that if $u v$ is an edge in S_{n} with label $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ then $\phi(u) \phi(v)$ is an edge in S_{n}^{\prime} with label $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$.

Given an n-marking μ of an n-sigraph $S_{n}=(G, \sigma)$, switching S_{n} with respect to μ is the operation of changing the n-tuple of every edge $u v$ of S_{n} by $\mu(u) \sigma(u v) \mu(v)$. The n sigraph obtained in this way is denoted by $\mathcal{S}_{\mu}\left(S_{n}\right)$ and is called the μ-switched n-sigraph or just switched n-sigraph.

Further, an n-sigraph S_{n} switches to n-sigraph S_{n}^{\prime} (or that they are switching equivalent to each other), written as $S_{n} \sim S_{n}^{\prime}$, whenever there exists an n-marking of S_{n} such that $\mathcal{S}_{\mu}\left(S_{n}\right) \cong S_{n}^{\prime}$.
Two n-sigraphs $S_{n}=(G, \sigma)$ and $S_{n}^{\prime}=\left(G^{\prime}, \sigma^{\prime}\right)$ are said to be cycle isomorphic, if there exists an isomorphism $\phi: G \rightarrow G^{\prime}$ such that the n-tuple $\sigma(C)$ of every cycle C in S_{n} equals to the n-tuple $\sigma(\phi(C))$ in S_{n}^{\prime}.
We make use of the following known result (see [10]).
Theorem 1.1 (E. Sampathkumar et al. [10]) : Given a graph G, any two n sigraphs with G as underlying graph are switching equivalent if, and only if, they are cycle isomorphic.
Let $S_{n}=(G, \sigma)$ be an n-sigraph. Consider the n-marking μ on vertices of S defined as follows: each vertex $v \in V, \mu(v)$ is the product of the n-tuples on the edges incident at v. Complement of S is an n-sigraph $\overline{S_{n}}=\left(\bar{G}, \sigma^{\prime}\right)$, where for any edge $e=u v \in$ $\bar{G}, \sigma^{\prime}(u v)=\mu(u) \mu(v)$. Clearly, $\overline{S_{n}}$ as defined here is an i-balanced n-sigraph due to Theorem 1.1.

If $B=\left\{u_{1}, u_{2}, \cdots, u_{r}, r \geq 2\right\}$ is a block of a graph Γ, then we say that vertex u_{1} and block B are incident with each other, as are u_{2} and B and so on. If two blocks B_{1} and B_{2} of G are incident with a common cut vertex, then they are adjacent blocks. If $B=\left\{e_{1}, e_{2}, \cdots, e_{s}, s \geq 1\right\}$ is a block of a graph G, then we say that an edge e_{1} and block B are incident with each other, as are e_{2} and B and so on. This concept was introduced by Kulli [2]. The vertices, edges and blocks of a graph are called its members.
The line graph $L(G)$ of a graph G is the graph whose vertex set is the set of edges of G in which two vertices are adjacent if the corresponding edges are adjacent (see [1]).

The semifull graph $\mathcal{S F}(G)$ of a graph G is the graph whose vertex set is the union of vertices, edges and blocks of G in which two vertices are adjacent if the corresponding members of G are adjacent or one corresponds to a vertex and the other to an edge incident with it or one corresponds to a block B of G and the other to a vertex v of G and v is in B. In fact, this notion was introduced by Kulli [3].

In [4], the author introduced the new notions called "Semifull line graphs and semifull block graphs" as follows: The semifull line graph $\mathcal{S F} \mathcal{L}(G)$ of a graph G is the graph whose vertex set is the union of the set of vertices, edges and blocks of G in which
 adjacent or one corresponds to a vertex of G and other to an edge incident with it or one corresponds to a block B of G and other to a vertex v of G and v is in B.
The semifull block graph $\mathcal{S F \mathcal { F }}(G)$ of a graph G is the graph whose vertex set is the union of the set of vertices, edges and blocks of G in which two vertices are adjacent in $\mathcal{S F B}(G)$ if the corresponding vertices and blocks of G are adjacent or one corresponds to a vertex of G and other to an edge incident with it or one corresponds to a block B of G and other to a vertex v of G and v is in B.

2. Semifull Line n-Sigraph of an n-Sigraph

Motivated by the existing definition of complement of an n-sigraph, we now extend the notion called semifull line graphs to realm of n-sigraphs: the semifull line n-sigraph $\mathcal{S F} \mathcal{L}\left(S_{n}\right)$ of an n-sigraph $S_{n}=(G, \sigma)$ as an n-sigraph $\mathcal{S F} \mathcal{L}\left(S_{n}\right)=\left(\mathcal{S F} \mathcal{L}(G), \sigma^{\prime}\right)$, where for any edge $e_{1} e_{2}$ in $\mathcal{S} \mathcal{F} \mathcal{L}(G), \sigma^{\prime}\left(e_{1} e_{2}\right)=\sigma\left(e_{1}\right) \sigma\left(e_{2}\right)$. Further, an n-sigraph $S_{n}=(G, \sigma)$ is called semifull line n-sigraph, if $S_{n} \cong \mathcal{S F} \mathcal{L}\left(S_{n}^{\prime}\right)$ for some n-sigraph S_{n}^{\prime}. The following result indicates the limitations of the notion of semifull line n-sigraphs as introduced above, since the entire class of i-unbalanced n-sigraphs is forbidden to be semifull line n-sigraphs.
Theorem 2.1 : For any n-sigraph $S_{n}=(G, \sigma)$, its semifull line n-sigraph $\mathcal{S F} \mathcal{L}\left(S_{n}\right)$ is i-balanced.

Proof : Since the n-tuple of any edge $u v$ in $\mathcal{S F} \mathcal{L}\left(S_{n}\right)$ is $\mu(u) \mu(v)$, where μ is the canonical n-marking of S_{n}, by Theorem $1.1, \mathcal{S} \mathcal{F} \mathcal{L}\left(S_{n}\right)$ is i-balanced.
For any positive integer k, the $k^{t h}$ iterated semifull line n-sigraph, $\mathcal{S F} \mathcal{L}^{k}\left(S_{n}\right)$ of S_{n} is defined as follows:

$$
\mathcal{S F} \mathcal{L}^{0}\left(S_{n}\right)=S_{n}, \mathcal{S} \mathcal{F} \mathcal{L}^{k}\left(S_{n}\right)=\mathcal{S} \mathcal{F} \mathcal{L}\left(\mathcal{S} \mathcal{F} \mathcal{L}^{k-1}\left(S_{n}\right)\right)
$$

Corollary 2.2: For any n-sigraph $S_{n}=(G, \sigma)$ and for any positive integer $k, \mathcal{S} \mathcal{F} \mathcal{L}^{k}\left(S_{n}\right)$ is i-balanced.

Theorem 2.3: For any two n-sigraphs S_{n} and S_{n}^{\prime} with the same underlying graph, their semifull line n-sigraphs are switching equivalent.

Proof: Suppose $S_{n}=(G, \sigma)$ and $S_{n}^{\prime}=\left(G^{\prime}, \sigma^{\prime}\right)$ be two n-sigraphs with $G \cong G^{\prime}$. By Theorem 2.1, $\mathcal{S F} \mathcal{L}\left(S_{n}\right)$ and $\mathcal{S F} \mathcal{L}\left(S_{n}^{\prime}\right)$ are i-balanced and hence, the result follows from Theorem 1.2.
The semifull n-sigraph $\mathcal{S F}\left(S_{n}\right)$ of an n-sigraph $S_{n}=(G, \sigma)$ as an n-sigraph $\mathcal{S F}\left(S_{n}\right)=$ $\left(\mathcal{S F}(G), \sigma^{\prime}\right)$, where for any edge $e_{1} e_{2}$ in $\mathcal{S F}(G), \sigma^{\prime}\left(e_{1} e_{2}\right)=\sigma\left(e_{1}\right) \sigma\left(e_{2}\right)$. Further, an n-sigraph $S_{n}=(G, \sigma)$ is called a semifull n-sigraph, if $S_{n} \cong \mathcal{S F}\left(S_{n}^{\prime}\right)$ for some n-sigraph S_{n}^{\prime}. The following result indicates the limitations of the notion of semifull n-sigraphs as introduced above, since the entire class of i-unbalanced n-sigraphs is forbidden to be semifull n-sigraphs.
Theorem 2.4: For any n-sigraph $S_{n}=(G, \sigma)$, its semifull n-sigraph $\mathcal{S F}\left(S_{n}\right)$ is i balanced.

Proof : Since the n-tuple of any edge $u v$ in $\mathcal{S F}\left(S_{n}\right)$ is $\mu(u) \mu(v)$, where μ is the canonical n-marking of S_{n}, by Theorem 1.1, $\mathcal{S F}\left(S_{n}\right)$ is i-balanced.
For any positive integer k, the $k^{\text {th }}$ iterated semifull n-sigraph, $\mathcal{S F}{ }^{k}\left(S_{n}\right)$ of S_{n} is defined as follows:

$$
\mathcal{S F}^{0}\left(S_{n}\right)=S_{n}, \mathcal{S F}^{k}\left(S_{n}\right)=\mathcal{S F}\left(\mathcal{S F}^{k-1}\left(S_{n}\right)\right)
$$

Corollary 2.5 : For any n-sigraph $S_{n}=(G, \sigma)$ and for any positive integer $k, \mathcal{S F}^{k}\left(S_{n}\right)$ is i-balanced.

Theorem 2.6 : For any two n-sigraphs S_{n} and S_{n}^{\prime} with the same underlying graph, their semifull n-sigraphs are switching equivalent.
Proof: Suppose $S_{n}=(G, \sigma)$ and $S_{n}^{\prime}=\left(G^{\prime}, \sigma^{\prime}\right)$ be two n-sigraphs with $G \cong G^{\prime}$. By Theorem 2.4, $\mathcal{S F}\left(S_{n}\right)$ and $\mathcal{S F}\left(S_{n}^{\prime}\right)$ are i-balanced and hence, the result follows from Theorem 1.2.
In [4], the author characterizes graphs such that semifull line graphs and semifull graphs are isomorphic.
Theorem 2.7: Let $G=(V, E)$ be a nontrivial connected graph. The graphs $\mathcal{S F} \mathcal{L}(G)$ and $\operatorname{SF}(G)$ are isomorphic if and only if G is a block.
In view of the above result, we have the following result that characterizes the family of n-sigraphs satisfies $\mathcal{S F} \mathcal{L}\left(S_{n}\right) \sim \mathcal{S F}\left(S_{n}\right)$.
Theorem 2.8: For any n-sigraph $S_{n}=(G, \sigma), \mathcal{S F} \mathcal{L}\left(S_{n}\right) \sim \mathcal{S F}\left(S_{n}\right)$ if and only if G is a block.
 by Theorem $2.7, G$ is a block.

Conversely, suppose that S_{n} is an n-sigraph whose underlying graph is a block. Then by Theorem $2.7, \mathcal{S} \mathcal{F} \mathcal{L}(G)$ and $\mathcal{S F}(G)$ are isomorphic. Since for any n-sigraph S_{n}, both $\mathcal{S F} \mathcal{L}\left(S_{n}\right)$ and $\mathcal{S F}\left(S_{n}\right)$ are i-balanced, the result follows by Theorem 1.2.

The following result characterize signed graphs which are semifull line n-sigraphs.
Theorem 2.9 : An n-sigraph $S_{n}=(G, \sigma)$ is a semifull line n-sigraph if and only if S_{n} is i-balanced n-sigraph and its underlying graph G is a semifull line graph.

Proof : Suppose that S_{n} is an i-balanced and G is a semifull line graph. Then there exists a graph G^{\prime} such that $\mathcal{S F} \mathcal{L}\left(G^{\prime}\right) \cong G$. Since S_{n} is i-balanced, by Theorem 1.1 , there exists an n-marking ζ of G such that each edge $u v$ in S_{n} satisfies $\sigma(u v)=\zeta(u) \zeta(v)$. Now consider the n-sigraph $S_{n}^{\prime}=\left(G^{\prime}, \sigma^{\prime}\right)$, where for any edge e in $G^{\prime}, \sigma^{\prime}(e)$ is the n-marking of the corresponding vertex in G. Then clearly, $\mathcal{S \mathcal { F } \mathcal { L } (S _ { n } ^ { \prime }) \cong S _ { n } \text { . Hence } S _ { n } \text { is a semifull } { } ^ { \text { i } } \text { . }}$ line n-sigraph.

Conversely, suppose that $S_{n}=(G, \sigma)$ is a semifull line n-sigraph. Then there exists an n-sigraph $S_{n}^{\prime}=\left(G^{\prime}, \sigma^{\prime}\right)$ such that $\mathcal{S F} \mathcal{L}\left(S_{n}^{\prime}\right) \cong S_{n}$. Hence, G is the semiful line graph of G^{\prime} and by Theorem 2.1, S_{n} is i-balanced.

In view of the above result, we can easily characterize n-sigraphs which are semifull n-sigraphs.

3. Semifull Block n-Sigraph of an n-Sigraph

Motivated by the existing definition of complement of an n-sigraph, we now extend the notion called semifull block graphs to realm of n-sigraphs: the semifull block n-sigraph $\mathcal{S F B}\left(S_{n}\right)$ of an n-sigraph $S_{n}=(G, \sigma)$ as an n-sigraph $\mathcal{S F \mathcal { F }}\left(S_{n}\right)=\left(\mathcal{S F B}(G), \sigma^{\prime}\right)$, where for any edge $e_{1} e_{2}$ in $\mathcal{S F B}(G), \sigma^{\prime}\left(e_{1} e_{2}\right)=\sigma\left(e_{1}\right) \sigma\left(e_{2}\right)$. Further, an n-sigraph $S_{n}=(G, \sigma)$ is called a semifull block n-sigraph, if $S_{n} \cong \mathcal{S F} \mathcal{L}\left(S_{n}^{\prime}\right)$ for some signed graph S_{n}^{\prime}. The following result indicates the limitations of the notion of semifull block n-sigraphs as introduced above, since the entire class of i-unbalanced n-sigraphs is forbidden to be semifull block n-sigraphs.

Theorem 3.1 : For any n-sigraph $S_{n}=(G, \sigma)$, its semifull block n-sigraph $\mathcal{S F B}\left(S_{n}\right)$ is i-balanced.
Proof : Since the n-tuple of any edge $u v$ in $\mathcal{S F} \mathcal{B}\left(S_{n}\right)$ is $\mu(u) \mu(v)$, where μ is the
canonical n-marking of S_{n}, by Theorem 1.1, $\mathcal{S F B}\left(S_{n}\right)$ is i-balanced.
For any positive integer k, the $k^{\text {th }}$ iterated semifull block n-sigraph, $\mathcal{S F B}^{k}\left(S_{n}\right)$ of S_{n} is defined as follows:

$$
\mathcal{S F B}^{0}\left(S_{n}\right)=S_{n}, \mathcal{S F B}^{k}\left(S_{n}\right)=\mathcal{S F B}\left(\mathcal{S F B} B^{k-1}\left(S_{n}\right)\right) .
$$

Corllary 3.2 : For any n-sigraph $S_{n}=(G, \sigma)$ and for any positive integer $k, \mathcal{S F B}^{k}\left(S_{n}\right)$ is i-balanced.
Theorem 3.3: For any two n-sigraphs S_{n} and S_{n}^{\prime} with the same underlying graph, their semifull block n-sigraphs are switching equivalent.
Proof : Suppose $S_{n}=(G, \sigma)$ and $S_{n}^{\prime}=\left(G^{\prime}, \sigma^{\prime}\right)$ be two n-sigraphs with $G \cong G^{\prime}$. By Theorem 3.1, $\mathcal{S F} \mathcal{B}\left(S_{n}\right)$ and $\mathcal{S F B}\left(S_{n}^{\prime}\right)$ are i-balanced and hence, the result follows from Theorem 1.2.
In [4], the author characterizes graphs such that semifull block graphs and semifull graphs are isomorphic.
Theorem 3.4: Let $G=(V, E)$ be a nontrivial connected graph. The graphs $\mathcal{S F} \mathcal{B}(G)$ and $\mathcal{S F}(G)$ are isomorphic if and only if G is P_{2}.
In view of the above result, we have the following result that characterizes the family of n-sigraphs satisfies $\mathcal{S F B}\left(S_{n}\right) \sim \mathcal{S F}\left(S_{n}\right)$.
Theorem 3.5: For any n-sigraph $S_{n}=(G, \sigma), \mathcal{S F B}\left(S_{n}\right) \sim \mathcal{S F}\left(S_{n}\right)$ if and only if G is P_{2}.
Proof: Suppose that $\mathcal{S F B}\left(S_{n}\right) \sim \mathcal{S F}\left(S_{n}\right)$. Then clearly, $\mathcal{S F \mathcal { B }}(G) \cong \mathcal{S F}(G)$. Hence by Theorem 3.4, G is P_{2}.
Conversely, suppose that S_{n} is an n-sigraph whose underlying graph is P_{2}. Then by Theorem 3.4, $\mathcal{S F B}(G)$ and $\mathcal{S F}(G)$ are isomorphic. Since for any n-sigraph S_{n}, both $\mathcal{S F B}\left(S_{n}\right)$ and $\mathcal{S F}\left(S_{n}\right)$ are i-balanced, the result follows by Theorem 1.2.
In view of the Theorem 2.9, we can easily characterize signed graphs which are semifull block signed graphs.

4. Conclusion

We have introduced the new notions for n-signed graphs called semifull n-sigraph and semifull line (block) n-sigraph of an n-sigraph. We have proved some results and presented the structural characterization of these notions. There are no structural characterizations of semifull graph and semifull line (block) graph, but we have obtained
the structural characterizations of semifull n-sigraph and semifull line (block) n-sigraph.

References

[1] Harary F., Graph Theory, Addison-Wesley Publishing Co., (1969).
[2] Kulli V. R., The semitotal block graph and the total block graph of a graph, Indian J. Pure and Appl.Math., 7 (1976), 625-630.
[3] Kulli V. R., The semifull graph of a graph, Annals of Pure and Applied Mathematics, 10(1) (2015), 99-104.
[4] Kulli V. R., On semifull line graphs and semifull block graphs, J. Comp. \& Math. Sci., 6(7) (2015), 388-394.
[5] Lokesha V., Reddy P.S.K. and Vijay S., The triangular line n-sigraph of a symmetric n-sigraph, Advn. Stud. Contemp. Math., 19(1) (2009), 123-129.
[6] Rangarajan R. and Reddy P.S.K., Notions of balance in symmetric n-sigraphs, Proceedings of the Jangjeon Math. Soc., 11(2) (2008), 145-151.
[7] RangarajanR., Reddy P.S.K. and Subramanya M. S., Switching Equivalence in Symmetric n-Sigraphs, Adv. Stud. Comtemp. Math., 18(1) (2009), 79-85. R.
[8] Rangarajan R., Reddy P.S.K. and Soner N. D., Switching equivalence in symmetric n-sigraphs-II, J. Orissa Math. Sco., 28 (1 \& 2) (2009), 1-12.
[9] Rangarajan R., Reddy P.S.K. and Soner N. D., $m^{\text {th }}$ Power Symmetric n-Sigraphs, Italian Journal of Pure \& Applied 985099211 Mathematics, 29(2012), 87-92.
[10] Sampathkumar E., Reddy P.S.K. and Subramanya M. S., Jump symmetric n-sigraph, Proceedings of the Jangjeon Math. Soc., 11(1) (2008), 89-95.
[11] Sampathkumar E., Reddy P.S.K., and Subramanya M. S., The Line n-sigraph of a symmetric n-sigraph, Southeast Asian Bull. Math., 34(5) (2010), 953-958.
[12] Reddy P.S.K. and Prashanth B., Switching equivalence in symmetric n-sigraphsI, Advances and Applications in Discrete Mathematics, 4(1) (2009), 25-32.
[13] Reddy P.S.K., Vijay S. and Prashanth B., The edge $C_{4} n$-sigraph of a symmetric n-sigraph, Int. Journal of Math. Sci. \& Engg. Appls., 3(2) (2009), 21-27.
[14] Reddy P.S.K., Lokesha V. and Gurunath Rao Vaidya, The Line n-sigraph of a symmetric n-sigraph-II, Proceedings of the Jangjeon Math. Soc., 13(3) (2010), 305-312.
[15] Reddy P.S.K., Lokesha V. and Gurunath Rao Vaidya, The Line n-sigraph of a symmetric n-sigraph-III, Int. J. Open Problems in Computer Science and Mathematics, 3(5) (2010), 172-178.
[16] Reddy P.S.K., Lokesha V. and Gurunath Rao Vaidya, Switching equivalence in symmetric n-sigraphs-III, Int. Journal of Math. Sci. \& Engg. Appls., 5(1) (2011), 95-101.
[17] Reddy P.S.K., Prashanth B. and Kavita. S. Permi, A Note on Switching in Symmetric n-Sigraphs, Notes on Number Theory and Discrete Mathematics,
$17(3)$ (2011), 22-25. Reddy P.S.K., Geetha M. C. and Rajanna K. R., Switching Equivalence in Symmetric n-Sigraphs-IV, Scientia Magna, 7(3) (2011), 34-38.
[18] Reddy P.S.K., Nagaraja K. M. and Geetha M. C., The Line n-sigraph of a symmetric n-sigraph-IV, International J. Math. Combin., 1 (2012), 106-112.
[19] Reddy P.S.K., Geetha M. C. and Rajanna K. R., Switching equivalence in symmetric n-sigraphs-V, International J. Math. Combin., 3 (2012), 58-63.
[20] Reddy P.S.K., Nagaraja K. M. and Geetha M. C., The Line n-sigraph of a symmetric n-sigraph-V, Kyungpook Mathematical Journal, 54(1) (2014), 95101.
[21] Reddy P.S.K., Rajendra R. and Geetha M. C., Boundary n-Signed Graphs, Int. Journal of Math. Sci. \& Engg. Appls., 10(2) (2016), 161-168.

